ABOUT US

News

Thermo Fisher Scientific 7월 재료 과학 연구 뉴스레터

페이지 정보

작성자 한국입자분석연구소 댓글 0건 조회 1,018회 작성일 22-07-21 16:28

본문

Thermo Fisher Scientific 7월 뉴스레터를 소개합니다.

재료 과학 분석에 관하여 다양한 분석기기와 분석방법에 대하여 확인 하실 수 있으십니다.



Having trouble viewing this email? View as Web page
Thermo Fisher Scientific
Material Science Research Newsletter
 
Ultra-fast analysis of inclusions in steel production samples
 
The monitoring and management of inclusions are central to the steelmaking process and vital for organizations to ensure the appropriate quality and properties of steel products while minimizing cost. In this interview, Jean-Marc Böhlen explains some of the underlying principles of ultra-fast analysis of non-metallic micro-inclusions using the Thermo Scientific™ ARL iSpark™ Optical Emission Spectrometer. He also outlines its advantages and benefits, and details some of its applications.
 
You can also watch the full webinar presentation, followed by a live demo of the ARL iSpark with Spark-DAT Software Suite.
 
Furthermore, Total Material has partnered with Thermo Fisher Scientific to deliver a globally-sourced knowledge base for our ARL iSpark series optical emission spectrometer. You can obtain a free trial of this global database below.
 
 
Inclusion-in-steel_300x250.png
 
Read the interview ›
 
 
Webinar.jpeg
 
Watch the webinar ›
 
 
Fotolia_10666816_Metal-Tubes_300x250.png
 
Learn more on Total Material database ›
 
 
 
New breakthrough in FTIR gas analysis with sensitivity down to mid ppt
 
New technology is enabling incredible improvement in low-level gas analysis processes. The Thermo Scientific™ MAX-iR™ FTIR Gas Analyzer with Thermo Scientific™ StarBoost™ Technology routinely measures contaminants down to single-digit parts per billion (ppb), and for bulk gas applications it measures down to mid parts per trillion (ppt).
The real-time measurement capability of the MAX-iR system extends beyond the lab environment and is routinely deployed in challenging environments such as ambient air or source testing.
 
The MAX-iR software was specifically developed for process and CEM environments. It enhances productivity without human interaction, while boasting an array of desirable capabilities:
 
Fully automated method control
DCS data output
Remote access
Reporting tools
 
The MAX-iR analyzer can be combined with various application-specific platforms to transform from a stand-alone analyzer to a fully automated solution that, in the words of users, “just works!”
 
 
bigstock-Asian-Woman-Petrochemical-Engi-375689785_300x250.png
 
Learn more about the MAX-iR FTIR Gas Analyzer ›
 
 
illustration-hydrogen-molecule-sbstract-iStock-1262352813_300x250.png
 
Hydrogen purity analysis: read the application note ›
 
 
turbine-fan-blades-1394833527_300x250.png
 
Real-time formaldehyde monitoring in natural gas-fired turbines: read the application note ›
 
 
 
Understanding Surface Reactions of the Solid Electrolyte Interface via Advanced Characterization Techniques
 
Dr Charl Jafta of Oak Ridge National Laboratory will outline the characterization of solid electrolyte interphase (SEI) layers that can help develop processes for the production of artificial SEI layers. A facile non-invasive electrochemical protocol that improves the interfacial impedance and contact will be presented, while other alternatives such as extreme fast charging that produces lithium plating on graphite electrodes Li4Ti5O12 (LTO) and TiNb2O7 (TNO) will be explored. In situ thermal XPS measurements of solid polymer electrolytes will be shown, opening the question if degradation is due to the temperature or the X-ray radiation. XPS as a standalone and complimentary tool to probe battery surfaces will be discussed with other operando techniques.
 
Attend this webinar to learn about:
 
Probing the SEI layer via operando small angle neutron scattering and using ex situ XPS as a complementary tool
Evolution of the SEI via operando techniques
How X-rays influence the degradation of solid polymer electrolytes
 
 
Event-Battery-Webinar-Series-Key-Visual_300x250.png
 
Register here ›
 
 
Mn_300x250.png
 
Watch the previous webinar ›
 
 
Seperator_300x250.png
 
Download our latest brochure on battery research ›
 
 
 
Accelerate your nanoparticle imaging and chemical analysis
 
Nanoparticles can be found in materials in almost every modern-day industry imaginable. Their broad applicability in materials is widely due to their combination of unique chemical properties, high surface area, and nanoscale size. The quantification and characterization of chemical properties of nanoparticles within a material are crucial first steps to designing materials that are more intentionally designed, structurally stable, and safer for the public.
 
Discover how to effectively examine statistically relevant data, no matter the nanoparticle type.
 
 
Large-area-of-Nanoparticles_300x250.png
 
Download the brochure ›
 
 
2021-MS-APW-Infographic-268230_Generic_v1.4-WEB-Simplified-B-Twitter-1024x512_300x250.png
 
Learn more about our Automated Particle Workflow ›
 
 
Thermo-Fisher-Logo_Thumbnail_300x250.png
 
Contact us ›
 
 
 
Celebrating 30+ years of TEM sample preparation innovation
 
Sample preparation for scanning/transmission electron microscopy (S/TEM) analysis is considered to be one of the most critical but challenging and time-consuming tasks in materials characterization labs. Conventional methods used to prepare ultra-thin samples required for S/TEM are slow, typically requiring many hours or even days of effort by highly trained personnel. This process is further complicated by the variety of different materials and the need for site-specific information.
 
For more than 30 years, Thermo Fisher Scientific has been continuously developing and optimizing sample preparation instruments and introducing software that enable in situ TEM sample preparation. Our products allow researchers to fast-track their research and accelerate innovation. In 1989, we were the ones that developed the first single-beam Ga+ FIB, allowing sub-microscale site-specific material removal.
 
See how TEM sample preparation has progressed over the past 30 years.
 
 
TEM_Sample_Prep-Timeline-Screenshot_300x250.png
 
Watch our mini-documentary ›